
An Architecture For Game State Management Based On State
Hierarchies

Luis Valente Aura Conci Bruno Feijó*

Universidade Federal Fluminense, Instituto de Computação, Niterói, Brazil
VLab/IGames, Dept. of Informatics, PUC-Rio, Rio de Janeiro, Brazil

Abstract

Computer games can be regarded as state machines as
far as their stages are concerned. The traditional design
for this state machine is to assign ids to the states and
to use conditional constructs to direct the game
execution to the proper state. However, this approach
is not robust enough and can quickly get out of control.
This work proposes an object-oriented model to state
specification and management, which features state
hierarchies.

Keywords: game state, design patterns, frameworks

Authors’ contact:
{lvalente,aconci}@ic.uff.br
*bruno@inf.puc-rio.br

1. Introduction

Computer games usually present many different stages.
For example, let a hypothetical game be composed of
the following stages: an introduction (first state), the
main menu, the main game, and a special menu that is
accessed in-game. Figure 1 illustrates this situation.

Figure 1: Hypothetical game state machine

The nodes in Figure 1 can be thought as elements
of a state machine. This game state machine reflects
the current stage that a game is.

A common implementation for game state
management, specially with non-object-oriented
languages, is to assign identification numbers (ids) to
the game states and to provide a main function handler
to redirect the execution flow to the corresponding
game state handler, using conditional constructs such
as switch and if/else [LaMothe 2003]. For
example, consider the following pseudo-code:

void GameHandler ()
{
 switch (GetCurrentState ())
 {

 case INTRO: Intro (); break;
 case MAIN_MENU: MainMenu (); break;
 case GAME_MENU: GameMenu (); break;
 case GAME_MAIN: GameMain (); break;
 }
}

This approach is not robust enough and some of its
problems are:

• The main function handler can become very
long and difficult to maintain as the number
of states increases;

• The game state handlers potentially replicate
the game loop implementation, making it
difficult to change it later;

• The implementation details of the game states
can become scattered throughout their
handlers, increasing their complexity and
maintenance cost.

This work presents an object-oriented approach to
game state management, that applies design patterns in
order to have states as well defined entities. Also, this
solution features state groups which makes it possible
the use of state hierarchies. The proposed architecture
is designed considering single-player games.

This proposed solution is implemented as part of
the Guff application layer [Valente 2005], a game
development tool that serves as the context for this
work.

2. Related Work

Other authors such as Lewis [2003] and Larocque
[2001] propose object-oriented solutions similar to the
one delineated in this article. They apply the state
pattern to model the game states, although Lewis
[2003] does not explicitly state it.

The solution proposed in [Larocque 2001] uses a
game manager class to keep track of the current game
state class, as the solution in this work does. The state
classes derive from a common abstract class, and are
designed as singletons. The state transitions are
designed in a slightly different way than the method
proposed in this paper. Their game manager interface
presents a method to change the current state, which
accepts object instances.

The solution by Lewis [2003] features an internal
state stack that is similar to mechanism proposed by
the present authors. That solution implements
temporary and definitive state transitions.

However, the solutions proposed by Lewis [2003]
and Larocque [2001] do not take into account state
hierarchies.

A slightly different approach is found in
[McShaffry 2003]. There, the author presents a simple
cooperative multi-task system design around a process
concept. A process is described as an execution unit,
and is designed as a pure virtual class with a single
method named Update(). This design does not pose
any particular architecture to the game. Inside the main
game loop, all processes get a chance to run their
Update() method. However, this concept is
excessively general and is at a lower-level than game
states.

3. The Guff Framework

The Guff framework provides a reusable architecture
for game development, being a pioneer work at the
Universidade Federal Fluminense graduate program.
This tool is divided into two main modules: the
application layer and the toolkit. The toolkit comprises
sets of ancillary classes which handle visualization,
automatic management of third party libraries,
application configuration, input devices, Math, audio,
and utilities. The application layer is the main subject
of this work. Currently, this tool is an open source
project [Guff 2006].

3.1. The Application Layer

The Guff application layer is modeled as a state
machine. The motivation is to have a state
corresponding to each game stage (or level), in order to
ease their development and management. Figure 2
illustrates the Guff application layer UML diagram.
This model presents simple states (the State class)
and state groups (the StateGroup class). The state
groups are an alternative to gather together states that
possess some kind of relationship.

In order to ease the usability of this system, the
framework automatically binds parent and children
states. As an example, the following code snippet
applies:

class State1 : public State
{
public:
 State1 ()
 : State (“state 1”) {}

 ...
};

int main ()
{
 State1 s1;

}

Figure 2: The Guff application layer class diagram

In that example, the code creates a concrete state
named “state 1” and registers it with the framework.
All states in the framework must have a parent. The
framework has a default state represented by the
MasterState class, which is the root of the game
state hierarchy. Whenever the developer does not
specify a parent state (like in the example), the
framework assigns the master state as its parent. Figure
3 displays the resulting hierarchy.

Figure 3: Hierarchy for state 1

If it is necessary to specify another parent, it
suffices to inform its name to the framework as in the
following example:

class State2 : public State
{
public:
 State2 ()
 : State (“state 2”, “parent”) {}

 ...
};

int main ()

{
 ...
 State2 s2;
}

However, the framework requires that any
referenced state must have been created previously in
order to be used. A possible approach to solve this
situation is to use object composition:

class Parent : public StateGroup
{
public:
 Parent ()
 : StateGroup (“parent”) {}
private:

 State2 s2;
 ...
};

int main ()
{
 ...
 Parent p;
 ...
}

Figure 4 illustrates the resulting hierarchy. State
groups have the master state as their parent by default,
just as simple states. In a similar way, if it is desired to
specify another state as parent, it will be necessary to
inform its name in the child state's constructor.

Figure 4: Resulting hierarchy

3.2. Application Layer Details

The application layer UML diagram is conceived as a
combination of design patterns. Design patterns
describe common solutions to problems that arise in
many systems. The solutions are described in a
implementation independent manner so they can be
applied in different contexts [Gamma et al. 1995].

The design patterns applied in this solution are the
State and Composite patterns. The State pattern makes
it possible for an object to change its behavior
whenever its internal state changes. The object then
seems to have changed its class [Gamma et al. 1995].
The Composite pattern helps to build tree hierarchies,
so their clients are able to treat simple and composite
objects in the same manner [Gamma et al. 1995]. The
Guff application layer embodies the State pattern to
represent a game state as an specific object. The
Composite pattern is applied to have the state machine
handle simple and composite states in a uniform
manner.

The AbstractState class is the common
interface for all states in the application layer. This
class defines operations categorized into three groups:
system events, state events, and events related to the
game loop execution model. Derived classes
implement those events in order to customize their
behavior.

The system events are defined as follows:

• OnWindowResize: Dispatched whenever the
main application window's size changes;

• OnMouseDown: Dispatched whenever the user
presses a mouse button;

• OnMouseUp: Dispatched whenever the user
releases a mouse button;

• OnMouseMove: Dispatched whenever the user
moves the mouse;

• OnKeyDown: Dispatched whenever the user
presses a key on the keyboard;

• OnKeyUp: Dispatched whenever the user
releases some key on the keyboard;

• OnActivate: Dispatched whenever the
application becomes active (gains focus);

• OnDeactivate: Dispatched whenever the
application becomes inactive.

The state events are categorized as follows:

• OnInit: Dispatched at application startup, on
behalf of all states. This is an opportunity for
all states to perform whatever initialization is
required for their operation;

• OnShutDown: Dispatched at application
shutdown, so the states are able to release
their resources back to the system.

• OnEnter: Dispatched whenever the
application enters the state;

• OnExit: Dispatched whenever the application
leaves the state.

In order to describe the events related to the game
loop execution model, it is necessary to define what an
execution model is. A real time game loop execution
model is an approach to manage the execution of tasks
present in a game [Valente 2005]. The way the game
loop is implemented determines how the game runs in
different machines. The Guff state machine applies a
Fixed-frequency Uncoupled Model [Valente et al.
2005], so it dispatches events related to the stages of
that model. The StateAppRunner class is the one
responsible for running the game loop. Figure 5
illustrates the Fixed-frequency Uncoupled Model.

Figure 5: The Guff game loop execution model

The events related to the game loop are:

• OnFixedFrequencyUpdate: Represents the
fixed frequency update stage;

• OnUpdate: Represents the update stage that
does not have timing restrictions. It is
dispatched as fast as possible and the state
receives the time elapsed since the last time
this stage was executed;

• OnRender: Dispatched whenever it is
necessary to render an image. This stage runs
as fast as possible, and automatically performs
double buffering on behalf of the application.

3.3. State Registering

The StateRegistry class serves as a global state
repository, which the framework queries in order to
automatically bind parent and children states. Its main
responsibility is to map names to state instances. The
framework requires that the states have unique names
for this reason. This class applies the singleton pattern

[Gamma et al. 1995] to ensure that only one instance of
the StateRegistry class exists in the application.

The parent to child binding is performed like in this
example:

State::State (const string & id, const
string & parentId)
 : AbstractState (id),
 mParent (StateRegistry::Instance()-
>getGroup (parentId))

{
 ...
 mParent->add (this);
}

StateGroup::StateGroup (const string &
id, const string & parentId)
 : AbstractState (id),
 mParent (StateRegistry::Instance ()-
>getGroup (parentId)),
...

{
 ...
 StateRegistry::Instance ()->addGroup
(this);
 if (mParent != 0)
 mParent->add (this);
}

The mParent object represents a reference to the
state's parent. The states may use their parents to
request services such as state changes. An object
representing a state group is automatically registered
with the StateRegistry. The only state that does not
have a parent is the MasterState singleton.

3.4. State Transitions

The states themselves request state transition
operations to their parents (which are state groups).
The state groups offer two ways of state changes:
definitive transitions and temporary transitions. This
work defines definitive state transitions as operations
that can not remember the state that was current before
the operation.

The class interface reflecting those operations is
defined as follows:

class StateGroup
{
 ...
public:
 // definitive changes
 void changeState (const string &
stateId);

 // temporary changes
 void pushState (const string & stateId);
 void popState ();
...

};

Those operations accept the name of the state to
which it is necessary to change.

The state groups organize their children states
internally with a stack, making it possible to implement
temporary state changes. The group's current state is
the one on top of its stack.

When a temporary state transition is requested, the
state group pushes the current state into the stack and
performs the operation. Next, when the state finishes
its purpose, the group is able to restore the former state
by popping it from the stack. Definitive state
transitions do not save state information into the stack.

3.5. State Transition Implementation Details

Figure 6 illustrates a state hierarchy that the remainder
of this section will use to describe state transition
operations.

Figure 6: Example hierarchy

In this example hierarchy (Figure 6), the “Menu”
state represents a state that may be invoked at any time.
The “Game” state represents the main game and the
“Intro” state represents an introductory animation that
is played at game startup. The “MasterState” is the
framework master state. The following code snippet
demonstrates some methods from those classes:

void Intro::OnUpdate (float time)
{
 totalTime += time;

 if (totalTime > 10)
 {mParent->changeState (“Game”); return;}
}

void Game::OnUpdate (float time)
{
 command = parseInputData ();

 if (command == MENU)
 { mParent->pushState (“Menu”); return; }
 ...

}

void Menu::OnUpdate (float time)
{
 command = parseInputData ();

 if (command == EXIT_MENU)

 { mParent->popState (); return; }
...

}

The changeState() method is implemented like this:

void StateGroup::changeState (const
string & stateId)
{
 if (theStateIsMine (stateId))
 doChangeState (stateId);
 else
 {
 if (mParent != 0)
 mParent->changeState (stateId);
 else
 // invalid transition, an error is
 // reported
 }

}

The state group first verifies if the requested state is
its child. If this is true, it performs the state transition
through the doChangeState() method. If the state is
not its child then the request is forwarded recursively
to its parent. If the request reaches the top of the
hierarchy and remains unfulfilled, the system reports
an error.

It is important to notice that this design permits
state transitions only to sibling and upward states.
Figure 7 depicts an example of this situation. In that
hierarchy, it is not possible to change from the “e” state
to the “h” state. However, it is possible to change from
the “e” to to the “c” state.

Figure 7: Another example hierarchy

This restriction is due to the fact that the framework
considers level one states (immediate master state
children) as the application main states, and the
remaining ones as their refinements. This assumption
simplifies the implementation of state transition
operations. The following code snippet demonstrates
the implementation of the doChangeState() method:

void StateGroup::doChangeState (const
string & stateId)
{
 if (stack is not empty)

 (top of the stack)->OnExit ();

 emptyStack();
 put stateId on top of the stack;
 (top of the stack)->OnEnter ();

}

The temporary state transition implementation is
similar to the definitive state transition. This operation
is defined as pushState():

void StateGroup::pushState (const string
& stateId)
{
 if (theStateIsMine (stateId))
 doPushState (stateId);
 else
 {
 if (mParent != 0)
 mParent->pushState (stateId);
 else
 // invalid transition, an error is
 // reported
 }

}

void StateGroup::doPushState (const
string & stateId)
{
 put stateId on top of the stack;
 (top of the stack)->OnEnter ();
 ...
}

There are two differences between these two kinds
of operations. Firstly, temporary state transitions do
not invoke the OnExit event of the current state before
storing the new state in the stack. Secondly, temporary
state transitions do not flush the state stack.

Last but not least, the state pop operation is defined
like this:

void StateGroup::popState ()
{
 (top of the stack)->OnExit ();
 pop the current state from the stack;
 ...
}

This operation does not invoke the OnEnter event
on behalf of the former state, which is the opposite
behavior of the definitive state transition operation.

4. Example

This section presents an application developed during
the Animation and 3D Games course at PUC-Rio that
applies the architecture proposed in this paper. The
application was inspired by the classic Arkanoid game.
Figure 8 depicts a screen capture from the demo.

Figure 8: Demo screen capture

The application consists of a state machine that
contains three states: introduction, wait for play, and
playing. Figure 9 illustrates the state hierarchy.

Figure 9: Demo state hierarchy

The demo introduction is a procedural animation
inspired by the popular movie “The Matrix”, and is
divided into two parts: raining and approximation. The
first substate consists of a raining animation just like
the movie. The second substate animates the author's
names towards the viewer. Figures 10 and 11
illustrates these substates, respectively.

Figure 10: Rain substate

Proceeding from the introduction, the game enters
the waiting state, where it waits for the player

command to start the game session. While in this state,
the game rotates a camera around the game table,
indefinitely.

Figure 11: Approximation substate

When the player signals to start the game, the state
machine enters the playing state. The game returns to
the waiting state when the playing game level is over.
Figure 12 displays the playing state where the player is
using the ball camera.

Figure 12: “Ball” camera

5. Conclusion

A computer game can be divided naturally into a set of
states. However, there are not many academic works
that comprehensively regard this problem.

The traditional solution to this problem is to weakly
qualify the game states as identification numbers (ids)
and to provide a global handler that is responsible for
guiding the game execution flow to the proper game
state. This solution is not robust enough and does not
scale very well.

This paper presents an object-oriented architecture
to model and implement game states with a well-
defined scope. The proposed architecture builds upon
other works by featuring simple states and composite
states, thus presenting a state hierarchy.

This architecture considers children states as
refinements of main game states. Hence, the
composite states may use other states to group related
functionality. The composite states present operations
to change, push, and pop states.

The implementation details of this architecture are
part of the Guff application layer, which is now an
open-source game development tool.

Acknowledgments

The first author would like to thank Bruno P.
Evangelista and Daniel Monteiro for reviewing this
work, and the financial support of CAPES. The second
and third authors thank CNPq, and the third author also
thanks FINEP for the financial support to this research
work.

References
LAMOTHE, A., 2003. Tricks of the 3D Game Programming

Gurus. Indianapolis: Sams Publishing.

VALENTE, L., 2005. Guff: Um sistema para desenvolvimento
de jogos. Master's thesis, Universidade Federal
Fluminense [in Portuguese].

GUFF PROJECT, 2006. Guff project home. Available from:
http://guff.tigris.org [Accessed 20 August 2006].

GAMMA, E., HELM, R., JOHNSON, R. AND VLISSIDES, J., 1995.
Elements of Reusable Object Oriented Software.
Reading: Addison-Wesley.

VALENTE, L., CONCI, A. AND FEIJÓ, B., 2005. Real-time game
loop models for single-player computer games. In:
Proceedings of the IV Workshop Brasileiro de Jogos e
Entretenimento Digital, 23-25 November 2005 São
Paulo. Porto Alegre: SBC, 89-99.

LEWIS, T., 2003. Managing game states in C++. Available
from: http://gamedevgeek.com/tutorials/managing-game-
states-in-c/ [Accessed 20 August 2006].

LAROCQUE, D., 2001. State pattern in C++ Applications.
Available from: http://www.codeproject.com/cpp/
statepattern3.asp [Accessed 20 August 2006].

MCSHAFFRY, M., 2003. Game Coding Complete. Scottsdale:
Paraglyph Press.

	1. Introduction
	2. Related work
	3. The Guff Framework
	3.1. The Application Layer
	3.2. Application Layer Details
	3.3. State registering
	3.4. State Transitions
	3.5. State Transition Implementation Details

	4. Example
	5. Conclusion

